1673-159X

CN 51-1686/N

广义Fibonacci数列的平方和公式

The Squared Sum Formula for Generalized Fibonacci Number Sequence

  • 摘要: 利用广义Fibonacci数列的递推性质, 采用初等方法证明了广义Fibonacci数列的几个平方和公式: \sum\limits_k = 1^n G_k^2 、\sum\limits_k = 1^n \left( - 1 \right)^kG_k^2 、\sum\limits_k = 1^n kG_k^2 、\sum\limits_k = 1^n G_kG_k + 1 。

     

    Abstract: According to the definition and the recurrence property of generalized Fibonacci sequences\left\ G_n\rm \right\:G_n + 1 = uG_n + vG_n - 1, G0=a, G1=b, where, some quadratic sum formulas of generalized Fibonacci numbers are proved, which are\sum\limits_k = 1^n G_k^2 、\sum\limits_k = 1^n \left( - 1 \right)^kG_k^2 、\sum\limits_k = 1^n kG_k^2 、\sum\limits_k = 1^n G_kG_k + 1 .

     

/

返回文章
返回