1673-159X

CN 51-1686/N

含忆阻电磁辐射的离散混沌神经网络动力学分析及其图像加密应用

Dynamical Analysis and Image Encryption Application of Discrete Chaotic Neural Networks with Memristive Electromagnetic Radiation

  • 摘要: 忆阻器能够提升神经网络的非线性程度,促使神经网络产生复杂多样的动力学行为。文章使用双曲正切构型的离散忆阻器模拟离散神经网络的外部电磁辐射,构建了一种新型忆阻神经网络。数值分析表明:当参数变化时,网络能够产生复杂的分岔过程,进而生成周期、混沌、超混沌吸引子;同时,网络还表现出依赖于参数的信号调控行为,如调幅、偏置;当初值变化时,网络可以产生不同类型的极端多稳态。基于所提忆阻神经网络,设计了一种面向医学图像的新型加密算法,采用对角扩散和三重位突变方法隐匿图像信息。相关测试结果表明,该算法能够有效保护医学图像的信息安全。

     

    Abstract: Memristor can enhance the nonlinearity of neural networks, promoting complex and diverse dynamic behaviors. This paper simulates external electromagnetic radiation in neural networks using a discrete memristor, constructing a new memristive neural network. Numerical analysis shows that, as parameters vary, the proposed network can undergo complex bifurcation processes, generating periodic, chaotic, and hyperchaotic attractors. Meanwhile, the network exhibits parameter-relied signal modulation behaviors, such as amplitude control and offset-boosting. As initial values change, the network can generate different types of extreme multistability. Furthermore, based on the proposed memristive neural network, this paper designs a new encryption algorithm for medical images, employing diagonal diffusion and triple-bit mutation methods to conceal image information. Relevant tests demonstrate that the algorithm can effectively protect the security of medical image information.

     

/

返回文章
返回