1673-159X

CN 51-1686/N

还原温度对碳氮载体负载CuCo双金属催化剂催化油脂加氢制脂肪醇性能的影响

Effect of Reduction Temperature on the Performance of CuCo Bimetallic Catalyst Supported on Carbon-nitrogen Carrier for Hydrogenation of Oil to Fatty Alcohol

  • 摘要: 针对单金属Cu和Co催化剂催化油脂经加氢脱氧(HDO)路线制备脂肪醇存在产率低的问题,本研究构筑了碳氮载体负载CuCo双金属催化剂体系。首先分别在还原温度为0、150、200和300 ℃条件下制备CuCo/CN催化剂,然后以硬脂酸为模型底物,在220 ℃,3.0 MPa H2条件下反应6 h,对比不同还原温度下制得催化剂的催化性能。结果表明:200 ℃还原的CuCo/CN-200催化剂表现出最高的硬脂酸转化率(85.1%)和十八醇产率(79.1%)、十八醇时空产率(0.46 mmolalcohol∙gcat−1∙h−1);XRD分析表明CuCo/CN-200催化剂具有更小的晶粒尺寸,从而暴露更多活性位点;XPS揭示Cu-Co间电子转移增强了C=O键加氢能力;FT-IR结果显示CuCo/CN-200催化剂对羧基吸附能力更强;将CuCo/CN-200催化剂应用于天然油脂加氢反应时,脂肪醇产率稳定在70%左右,表现出较好的底物适应性;经5次重复使用后十八醇产率下降仅13.6%,表现出良好的催化稳定性。本研究可为高效非贵金属催化剂的设计提供理论依据和优化策略。

     

    Abstract: To address the issue of low yield in the production of fatty alcohols via the hydrodeoxygenation (HDO) pathway using single-metal Cu or Co catalysts, this study constructed a carbon-nitrogen-supported CuCo bimetallic catalyst system. The CuCo/CN catalysts were first prepared at reduction temperatures of 0, 150, 200, 300 ℃, respectively. Subsequently, stearic acid was used as a model substrate to evaluate the catalytic performance under reaction conditions of 220 ℃ and 3.0 MPa H2 for 6 h. The results demonstrate that the CuCo/CN-200 catalyst, reduced at 200 ℃, exhibited the highest stearic acid conversion (85.1%), octadecanol yield (79.1%), and space-time yield (0.46mmolalcohol∙gcat−1∙h−1). XRD analysis revealed that the CuCo/CN-200 catalyst possessed smaller crystallite sizes, thereby exposing more active sites. XPS results indicate that electron transfer between Cu and Co enhanced the hydrogenation capability of the C=O bond. FT-IR spectroscopy confirmed that the CuCo/CN-200 catalyst exhibited stronger adsorption of carboxyl groups. When applied to the hydrogenation of natural oils, the CuCo/CN-200 catalyst maintained a stable fatty alcohol yield of approximately 70%, demonstrating excellent substrate adaptability. After five reuse cycles, the octadecanol yield decreased by only 13.6%, highlighting its superior catalytic stability. This study provides theoretical insights and optimization strategies for the design of highly efficient non-noble metal catalysts.

     

/

返回文章
返回