1673-159X

CN 51-1686/N

基于并行时间通道注意力反馈网络的微服务异常多分类

Anomaly Multi-classification for Microservices Based on Parallel Time Channel Attention Feedback Network

  • 摘要: 在微服务架构中,多元时间序列数据是系统监控和运维的核心组成部分,异常类型往往呈现显著的多样性和复杂性。然而,当前缺少对于异常多分类方法的相关研究。为此,文章提出一种基于并行时间通道注意力反馈网络的微服务系统异常多分类(parallel time channel attention feedback network,PTCAFNet)模型:使用时间卷积网络(temporal convolutional network,TCN)提取多元时间序列的长时间依赖特征,基于挤压−激励网络(squeeze-and-excitation network,SENet)提取全局特征,并使用并行的通道注意力机制分别捕捉全局和局部特征,以得到全局异常模式和细粒度异常特征,提升模型对于异常的识别能力和鲁棒性;通过反馈机制(IM)增强模型对特征的融合能力,提升通道关系建模和构建健壮特征表达的能力。实验结果表明,PTCAFNet的Macro F1和Micro F1的平均得分为0.922和0.963。与其他基线模型相比,分别提高了约36.9%和3.3%。

     

    Abstract: In microservice architectures, multivariate time series data constitutes a core component of system monitoring and operations maintenance, with anomaly types often exhibiting significant diversity and complexity. However, current research lacks sufficient studies on multi-class classification methods for anomalies. Therefore, this paper proposes a multi-class anomaly detection model for microservice systems based on a parallel time channel attention feedback network(PTCAFNet ). The model uses temporal convolutional network(TCN)to extract long-term dependency features from multivariate time series, employs squeeze-and-excitation network(SENet )to extract global features, and adopts parallel channel attention mechanisms to separately capture global and local features, and obtains global anomaly patterns and fine-grained anomaly characteristics to enhance anomaly recognition capability and robustness. Through feedback mechanisms(IM), it strengthens feature fusion, and improves channel relationship modeling and robust feature representation. Experimental results demonstrate that PTCAFNet achieves average scores of 0.922 in Macro-F1 and 0.963 in Micro-F1, outperforming baseline models by approximately 36.9% and 3.3% respectively.

     

/

返回文章
返回